
Research Paper

Comparison of Response policy to COVID-19: focus on prediction model

2022 KAPA International Conference

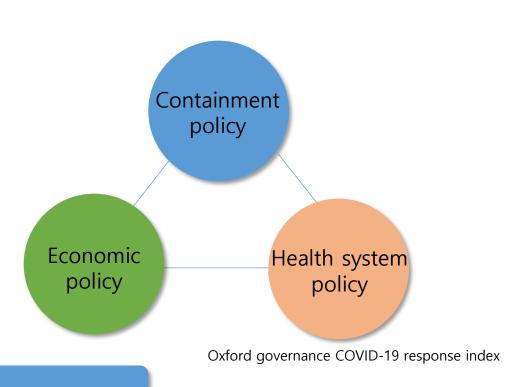
Dohyo Jeong University of Texas at Dallas



Introduction

 \bigcirc

Ś


Introduction

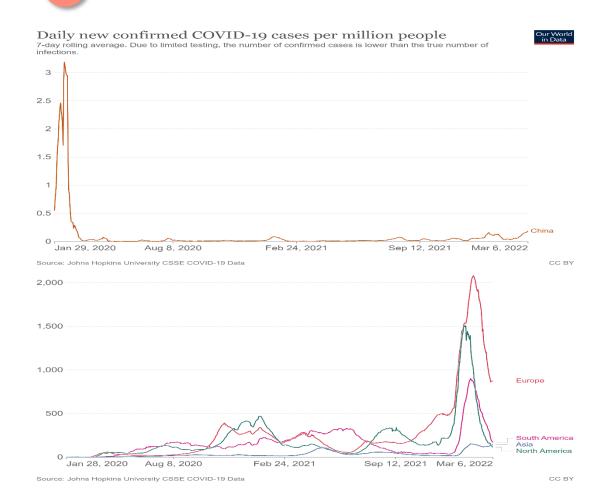
The government implements various policies to prevent the spread of infectious diseases.

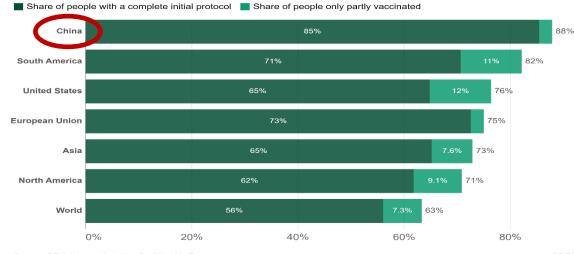
The circumstances of each government determine the characteristics and intensity of each policy.

Governance Response Policy

Research Question

Q1: What response policies were important in each countries?


Introduction


M

Introduction

China has significantly different patterns on COVID pandemic

Share of people vaccinated against COVID-19, Mar 6, 2022

Source: Official data collated by Our World in Data Note: Alternative definitions of a full vaccination, e.g. having been infected with SARS-CoV-2 and having 1 dose of a 2-dose protocol, are ignored to maximize comparability between countries.

CC BY

Research Question

Q2: Is China's response policy different from other countries?

Research Design

Page

 \bigcirc

S

Data: OxCGRT, a government response index

- Unit of Analysis: Government
- From January 2020 to March 2022
- 831 days

Variables

- Dependent Variable
- Degree of change in confirmed cases
- Input Variable
- 16 response policies

Methodology

Predict model

- Regression Decision Tree and Random Forest
- Vector autoregression (VAR)
- Granger causality test

Table 1. Variable

System	Policies		
Containment	stringency		
policies	school closing		
	work closing		
	event closing		
	restriction gatherings		
	transport closing		
	stay home		
	restriction move		
	restriction travel		
Economic policies	income support		
	debt relief		
Health system	public campaigns		
policies	testing policy		
	contact tracing		
	mask policy		
	vaccine policy		
	elder protect		

Oxford governance COVID-19 response index

ļ

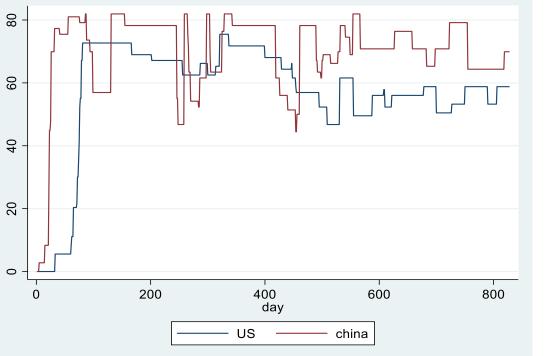
Page 3

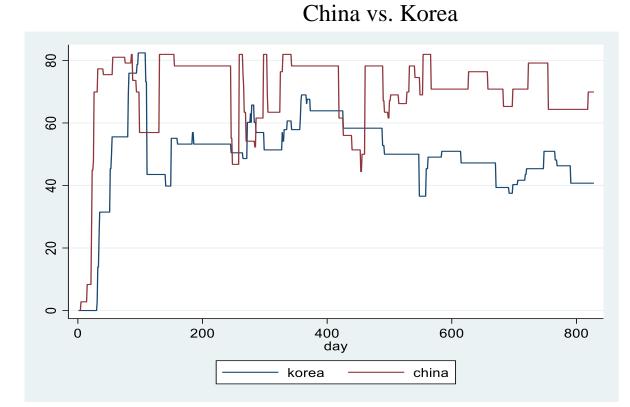
 \mathcal{O}

S

Descriptive analysis

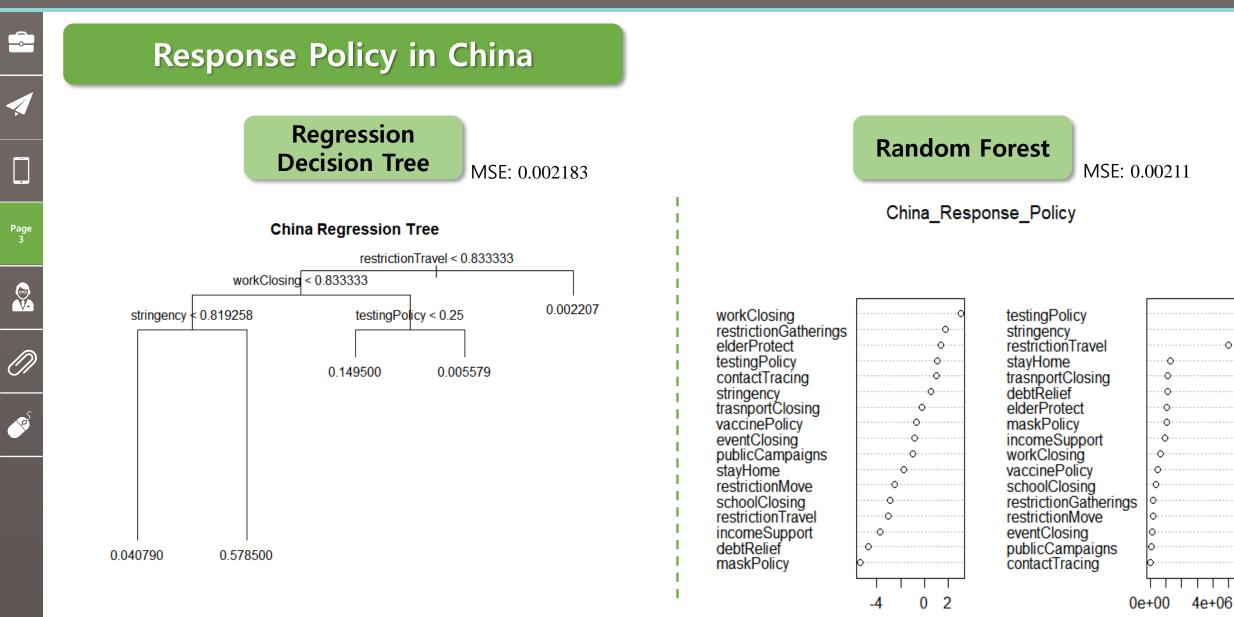
Descriptive statistical analysis result

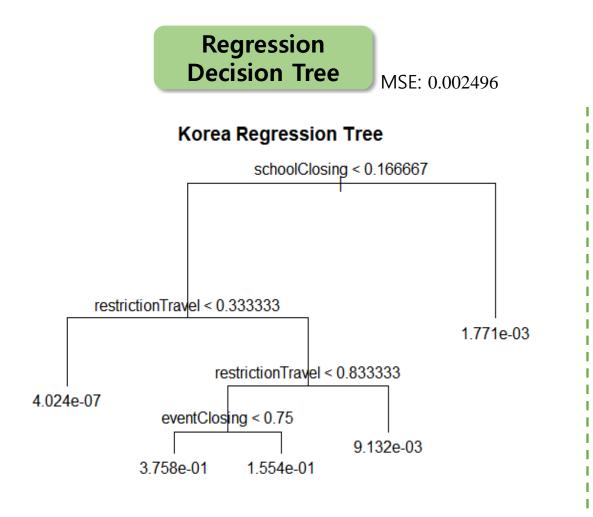

			China		Korea		US	
		Obs	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.
	stringency	831	69.60	13.85	49.67	13.48	56.93	17.88
	school closing	831	2.51	0.80	1.65	1.05	2.23	0.82
	work closing	831	2.43	0.71	1.52	0.64	1.78	0.78
Containment	event closing	831	1.92	0.35	1.59	0.56	1.62	0.62
policy	restriction gatherings	831	3.83	0.70	3.40	1.27	3.39	1.17
	transport closing	831	1.11	0.90	1.11	0.90	0.91	0.29
	stay home	831	2.37	0.99	0.58	0.56	1.21	0.59
	restriction move	831	1.80	0.49	0.69	0.71	1.49	0.65
	restriction travel	831	2.45	0.80	2.41	0.70	3.03	0.75
Economic	income support	831	0.88	0.33	0.89	0.31	1.13	0.92
policy	debt relief	831	1.47	0.77	0.91	0.29	0.67	0.47
Health system policy	public campaigns	831	1.98	0.18	1.93	0.38	1.82	0.57
	testing policy	831	2.84	0.50	2.45	0.93	2.77	0.78
	contact tracing	831	2.00	0.07	1.92	0.38	0.98	0.15
	mask policy	831	2.39	0.79	2.41	0.96	2.96	1.09
	vaccine policy	831	2.34	2.29	2.08	2.22	2.36	2.33
	elder protect	831	2.14	0.82	1.96	0.69	1.98	0.57

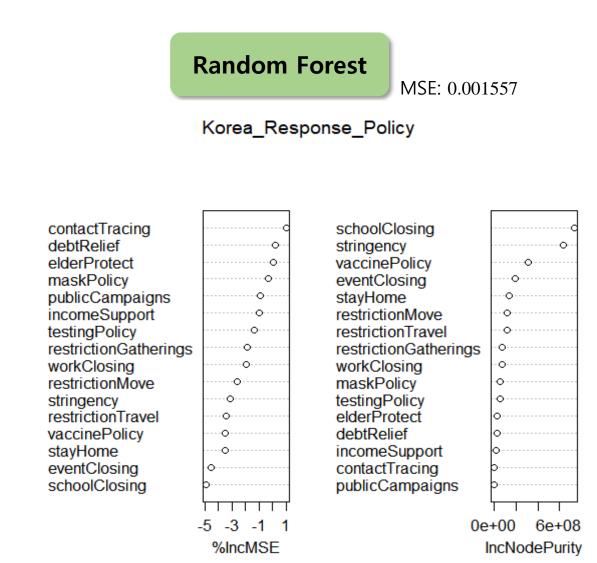

- China has the most stringent policies
- China most actively uses containment policy
- The US mainly used mask and vaccine policy

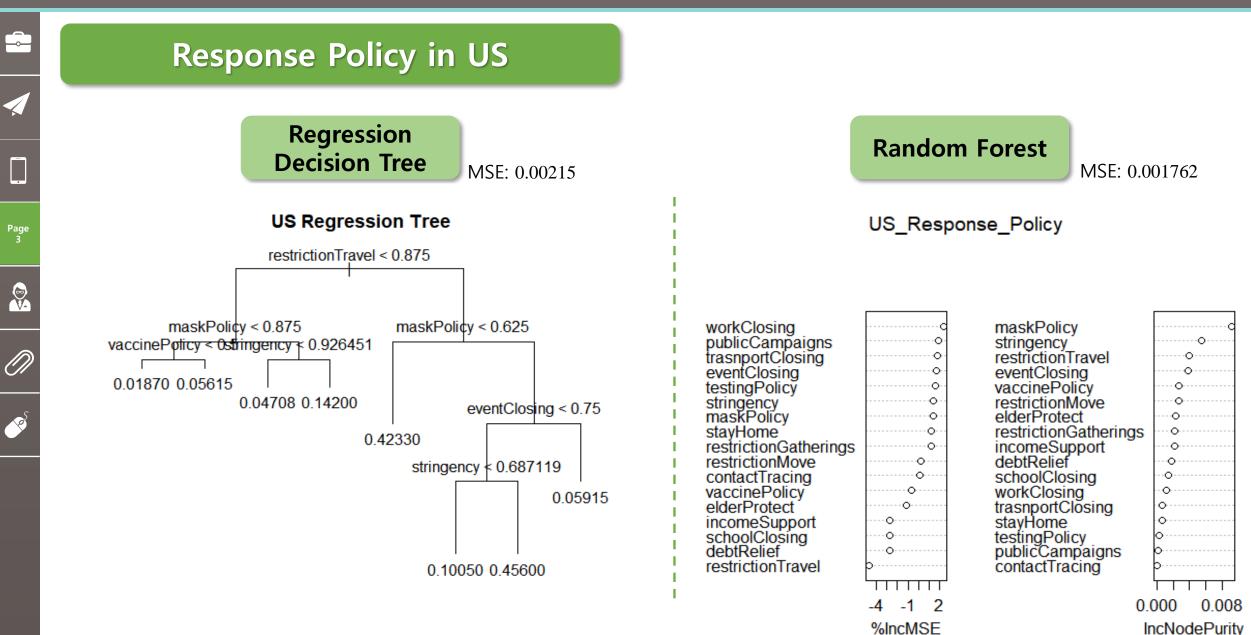
Descriptive analysis

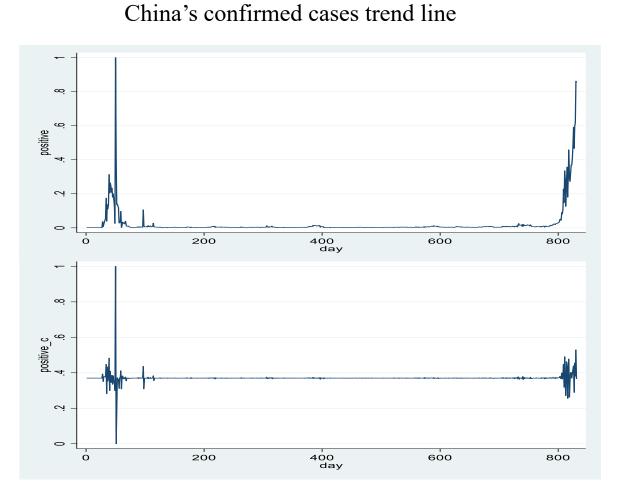
Stringency Index Trend Comparison


China vs. US




IncNodePurity

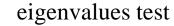

%IncMSE

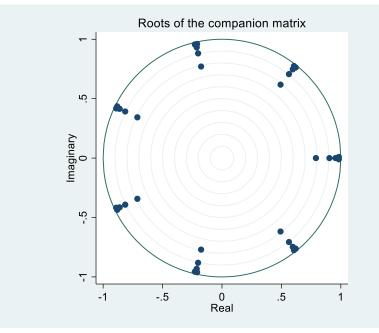


Dickey-Fuller test

Variable	z(t)	
positive	-5.403***	
work closing	-4.630***	
restriction gatherings	-6.145***	
elder protect	-3.107***	
testing policy	-3.829***	
stringency	-5.209***	
stay home	-4.794***	
Observation	830	
*** p < 0.001		

• The optimal time lag was analyzed as seven days


C PS


Granger causa	litv tes	t for	China
Granger Causa	inty tes		Cinica

Granger causality Wald tests

Equation	Excluded	chi2	P > chi2	
positive	work closing	6.5557	0.010 ***	
	restriction gatherings	0.8464	0.358	
	elder protect	17.049	0.000 ***	
	testing policy	18.165	0.000 ***	
	stringency	3.4092	0.065	
	stay home	4.0558	0.044 **	
	ALL	35.077	0.000 ***	
** p < 0.05, *** p < 0.01				

• Also, the change in confirmed cases had the Granger causality between stay home and testing policy.

• All eigenvalues are within the unit circle.

• VAR performed satisfies the stability condition.

Implications

- ▶ This study created a **predictive model for the effective response policies** for each country.
 - China's containment policy plays an important role compared to other countries
 - Korea: school closures and contact tracking
 - US: mixes various policies
- Based on this model, we can predict the effective policies for each country when a new disease occurs.
 Also, in the case of China, a time-series influence was confirmed.

limitations

- Regression decision trees and random forests do not reflect time-series characteristics.
 - Therefore, I will utilize Long Short-Term Memory (LSTM) that can reflect time series characteristics as a next step.

S

Thank

vou!

Reference

Balmford, B., Annan, J. D., Hargreaves, J. C., Altoè, M., & Bateman, I. J. (2020). Cross-country comparisons of Covid-19: policy, politics and the price of life. Environmental and Resource Economics, 76(4), 525-551.

Bastos, S. B., & Cajueiro, D. O. (2020). Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil. Scientific Reports, 10(1), 1-10.

Brauner, J. M., Mindermann, S., Sharma, M., Johnston, D., Salvatier, J., Gavenčiak, T., ... & Kulveit, J. (2021). Inferring the effectiveness of government interventions against COVID-19. Science, 371(6531), eabd9338.

Carraro, A., Ferrone, L., & Squarcina, M. (2020). Are COVID-19 containment measures equally effective in different world regions?. DISEI, Università degli Studi di Firenze.

Cross, M., Ng, S. K., & Scuffham, P. (2020). Trading health for wealth: The effect of COVID-19 response stringency. International Journal of Environmental Research and Public Health, 17(23), 8725.

Hawkins, R. B., Charles, E. J., & Mehaffey, J. H. (2020). Socio-economic status and COVID-19-related cases and fatalities. Public health, 189, 129-134.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.

Kaçak, H., & Yildiz, M. S. (2020). Stringency of government responses to COVID-19 and initial results: A comparison between five European countries and Turkey. Türk Hijyen ve Deneysel Biyoloji Dergisi, 77(2), 233-242.

Migone, A. R. (2020). The influence of national policy characteristics on COVID-19 containment policies: a comparative analysis. Policy Design and Practice, 3(3), 259-276.

Ren, X. (2020). Pandemic and lockdown: a territorial approach to COVID-19 in China, Italy and the United States. Eurasian Geography and Economics, 61(4-5), 423-434.

Reuters. Emma Farge. (2020. 6. 28). WHO says COVID-19 pandemic is 'one big wave', not seasonal. URL: https://www.reuters.com/article/us-health-coronavirus-who-idUSKCN24T16U

Thu, T. P. B., Ngoc, P. N. H., & Hai, N. M. (2020). Effect of the social distancing measures on the spread of COVID-19 in 10 highly infected countries. Science of the Total Environment, 742, 140430.